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Supplementary Material

In this supplementary material, we present a detailed
overview of our datasets and how the Air-to-Ground dataset
is collected. We also provide more results on Air-to-Ground
and an expanded set of qualitative results. Moreover, we
evaluate the runtime performance of our method as well as
the performance with better RANSAC solver.

1. Datasets

To improve the robustness of RDD in challenging scenarios,
we proposed a training dataset Air-to-Ground and 2 bench-
mark datasets to better understand the performance.

1.1. MegaDepth-View

MegaDepth-View is derived from the test scenes of
MegaDepth [9]. MegaDepth [9] is a large-scale outdoor
dataset containing over 1 million Internet images from 196
different locations. Camera poses are reconstructed using
COLMAP [14, 15], and depth maps are generated via multi-
view stereo. The test scenes comprise 8 distinct locations
around the world, ensuring diversity in the testing data.

We focus on image pairs that exhibit significant view-
point shifts and scale changes. For all possible image pairs,
we first compute the overlap between two images by bi-
directionally warping them using camera poses and depth.
Then, we select image pairs with more than 2,000 match-
ing pixels but fewer than 20,000 matching pixels. This pro-
cess resulted in a total of 1,487 image pairs, forming our
MegaDepth-View benchmark. Example pairs are shown
in Fig. 1.

1.2. Air-to-Ground

1.2.1. Data Collection
3D reconstruction from imagery captured at multiple al-
titudes has increasingly garnered attention, driven by the
growing UAV industry. Finding reliable correspondences
between cross-view imagery has become a significant bot-
tleneck in this domain [1]. RDD is designed to maintain ro-
bustness under large camera baselines and aims to enhance
the accuracy and reliability of its downstream applications
like 3D reconstruction for cross-view imagery. To validate
RDD’s ability to address such bottlenecks and evaluate its
robustness, we collected the first large benchmark dataset
focusing on cross-view imagery. This dataset includes a to-
tal of 41 famous locations around the world, such as the Eif-
fel Tower, Louvre Museum, Sacré-Cœur Basilica, London
Bridge, Ponte Vecchio, Las Vegas Strip, Altare della Patria,
Flatiron Building, Jackson Square, and Plaza de España.

Figure 1. Example Pairs from MegaDepth-View and Air-
to-Ground The top section shows example pairs from the
MegaDepth-View benchmark, which emphasizes large viewpoint
shifts and scale differences. The bottom section presents example
pairs from the Air-to-Ground dataset/benchmark, designed for the
novel task of matching aerial images with ground images.

The dataset has around 27,000 images and over 600,000 air-
to-ground image pairs.

Inspired by MegaDepth [9], we use COLMAP [14, 15]
to reconstruct camera poses and estimate depth maps. Dif-
fering from MegaDepth [9] which uses internet images, we
collect Internet drone videos and ground images. Drone
videos allow us to track frames from the ground up to
the air, generating one comprehensive 3D reconstruction
including both ground images and frames extracted from
drone videos.

The raw depth maps obtained from COLMAP often in-
clude significant outliers that negatively affect the accuracy
of warping used to estimate overlaps and compute match-
ing pixels. These outliers arise primarily from unmatchable
moving objects and regions such as the sky or uniform fore-
ground areas like roads. To address these challenges, we
implement a series of depth post-processing steps. First,
we use a semantic segmentation model [21] to to mask pre-
defined classes prone to unreliable depth estimation, such
as sky, sidewalks, vehicles, people, and animals and etc.,
which are prone to producing unreliable depth information.
Second, small and isolated regions are removed using con-
nected component analysis, discarding regions smaller than
1,000 pixels to retain only significant structures. These
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Figure 2. More Qualitative Results on MegaDepth-1500. RDD* outperforms DeDoDe-G* in semi-dense matching setting with 30,000
keypoints with a better runtime efficiency Tab. 2. The red color indicates epipolar error beyond 1 × 10−4 (in the normalized image
coordinates).

RDD* RDD DeDoDe-G* ALIKED Xfeat*RDD* RDD DeDoDe-V2-G ALIKED Xfeat*

Figure 3. More Qualitative Results on MegaDepth-View. RDD and RDD* are robust under large viewpoint shifts and scale differences.
The red color indicates epipolar error beyond 1× 10−4 (in the normalized image coordinates).

steps effectively enhance the quality of the depth data by
mitigating noise and focusing on stable, meaningful fea-
tures.

Similar to Sec. 1.1, for all possible aerial and ground im-
age pairs, we apply the same warping function and thresh-
old, and randomly select 1,500 image pairs to construct the
benchmark dataset. Example pairs are shown in Fig. 1. This
benchmark dataset provides a novel air-to-ground setting
for evaluating the performance of feature-matching meth-
ods.

1.2.2. Results

Recalling the experiment setting in Sec. 4.1 of the main pa-
per, we report the AUC of the recovered pose under thresh-
old (5◦, 10◦ ,and 20◦). We use RANSAC to estimate the es-
sential matrix. We compared RDD against the other detec-
tor/descriptor methods [3, 5, 8, 12, 17, 19, 20]. The results
are presented in Tab. 1 and visually in Fig. 4. Our results
show a performance gain compared to previous methods.
These results further confirm the robustness of RDD and
RDD* in challenging scenarios.
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Figure 4. Qualitative Results on Air-to-Ground. RDD and RDD* demonstrate the ability to extract robust descriptors that perform
well in cross-view settings, highlighting the effectiveness of our proposed method. DeDoDe-G* also achieves competitive performance,
benefiting from the powerful foundation model Dino-v2 [11].

Table 1. More results on proposed Air-to-Ground benchmark.
Results are measured in AUC (higher is better). Best in bold, sec-
ond best underlined.

Method @5◦ @10◦ @20◦

Dense
DKM [4] CVPR’23 65.0 77.2 85.7
RoMa [7] CVPR’24 71.3 82.4 89.5

Semi-Dense
LoFTR [16] CVPR’21 21.5 33.8 45.6
ASpanFormer [2] ECCV’22 45.8 60.0 71.0
ELoFTR [18] CVPR’24 49.4 62.8 73.2
XFeat* [12] CVPR’24 12.0 19.2 27.9
RDD* 43.8 55.3 64.9

Sparse with Learned Matcher
SP [3]+SG [13] CVPR’19 42.0 56.3 67.7
SP [3]+LG [10] ICCV’23 47.9 62.7 73.9
RDD+LG [10] ICCV’23 55.1 68.9 78.9

Sparse with MNN
RDD 41.0 56.5 68.5

2. More Qualitative Results

Fig. 2 shows more qualitative results of our proposed
method, RDD and RDD*, compared with other methods
on MegaDepth-1500 as mentioned in the main paper, and
Fig. 3 shows more results on MegaDepth-View. For more
challenging cases, such as strong viewpoint shifts and scale

changes, RDD and RDD* exhibit exceptional robustness
against previous methods. This robustness is expected as
our network is designed to model both geometric transfor-
mations and global context.

3. Running Time Analysis

In this section, we present a detailed timing analysis of
RDD in both sparse and semi-dense matching settings. We
also compare RDD against other methods [3, 5, 8, 12, 17,
19, 20], using the same experimental settings as the main
paper. All methods are evaluated on an NVIDIA RTX
4090 GPU with 24GB of VRAM. Tab. 2 shows the in-
ference speeds of all methods, measured in milliseconds.
AUC@5◦on MegaDepth-1500 for all methods is provided
for reference. RDD and RDD* demonstrate competitive
feature matching performance with competitive efficiency.
A detailed breakdown of the time required for each step of
our method is presented in Tab. 3. Notably, RDD is sig-
nificantly faster than RDD*, as it uses fewer keypoints and
does not require refinement. Although RDD* takes more
time compared to RDD , it still achieves a good balance be-
tween efficiency and performance.

4. More Experiments

Better RANSAC solver To fully understand the potential
of RDD, we performed an additional experiment with better
RANSAC solver Lo-RANSAC Please see Tab. 4 for results
using a better RANSAC solver. We test RDD with the same
setting as the main paper.



Table 2. Runtime comparison on Megadepth-1500. Average
runtime per pair of RDD and RDD* is compared to previous meth-
ods.

Method Runtime (ms) ↓ MegaDepth-1500
(AUC @ 5◦) ↑

SuperPoint [3] CVPRW’18 302 24.1
DISK [17] NeurIPS’20 98 38.5
ALIKED [20] TIM’23 182 41.8
XFeat [12] CVPR’24 32 24.0
DeDoDe-G [5] 3DV’24 382 47.2
RDD 198 50.7
RDD* 416 54.2

Table 3. Timing Analysis. Average required time by each step of
our method on a NVIDIA RTX 4090 GPU

Method Det/Des Matching Refinement

RDD 70 ms 0.04 ms -
RDD* 82 ms 100 ms 20 ms

Table 4. RDD with LO-RANSAC. RDD is evaluated with top
4,096 features

Method
MegaDepth-1500 MegaDepth-View

AUC AUC
@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

RDD 62.9 75.8 85.1 61.0 73.4 81.9

Table 5. RDD with LO-RANSAC. RDD is evaluated with top
4,096 features

Method
MegaDepth-1500 MegaDepth-View

AUC AUC
@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

RDD+DeDoDe-G [5] 3DV’24 48.6 65.3 78.0 44.1 58.8 70.3
SuperPoint [3] CVPRW’18+RDD 30.3 48.7 66.5 33.3 51.3 66.9

SuperPoint [3] CVPRW’18 24.1 40.0 54.7 7.50 13.3 21.1
DeDoDe-V2-G [5, 6] CVPRW’24, 3DV’24 47.2 63.9 77.5 33.1 47.6 60.2

Different Combination of Detector and Descriptor
Tab. 5 shows that using keypoint locations from RDD could
slightly improve the performance of DeDoDe. Also, using
descriptors from RDD could improve the performance of
previous methods.
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