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Abstract

As a core step in structure-from-motion and SLAM, robust
feature detection and description under challenging sce-
narios such as significant viewpoint changes remain unre-
solved despite their ubiquity. While recent works have iden-
tified the importance of local features in modeling geomet-
ric transformations, these methods fail to learn the visual
cues present in long-range relationships. We present Robust
Deformable Detector (RDD), a novel and robust keypoint
detector/descriptor leveraging the deformable transformer,
which captures global context and geometric invariance
through deformable self-attention mechanisms. Specifi-
cally, we observed that deformable attention focuses on
key locations, effectively reducing the search space com-
plexity and modeling the geometric invariance. Further-
more, we collected an Air-to-Ground dataset for training
in addition to the standard MegaDepth dataset. Our pro-
posed method outperforms all state-of-the-art keypoint de-
tection/description methods in sparse matching tasks and is
also capable of semi-dense matching. To ensure compre-
hensive evaluation, we introduce two challenging bench-
marks: one emphasizing large viewpoint and scale vari-
ations, and the other being an Air-to-Ground benchmark
— an evaluation setting that has recently gaining popular-
ity for 3D reconstruction across different altitudes. Project
page: https://xtcpete.github.io/rdd/.

1. Introduction
Keypoint detection and description are central to numerous
3D computer vision tasks, including structure-from-motion
(SfM), visual localization, and simultaneous localization
and mapping (SLAM). These tasks depend on reliable key-
points and descriptors to establish accurate tracks, which
are crucial for downstream algorithms to interpret spatial
relationships—a requirement in fields from robotics to aug-
mented reality [20]. When applied to real-world tasks, these
systems face challenges such as significant viewpoint shifts,
lighting variations, and scale changes.
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Figure 1. Our proposed method effectively performs both sparse
and semi-dense feature matching, referred to as RDD and RDD*,
respectively, as shown in the top section. RDD demonstrates its
ability to extract accurate keypoints and robust descriptors, en-
abling reliable matching even under significant scale and view-
point variations, as illustrated in the bottom section.

Historically, feature detection and description methods
relied on rule-based techniques such as SIFT , SURF, and
ORB [3, 25, 35]. However, these methods oftenf strug-
gled with the aforementioned challenges. To better address
these issues, recent works [6, 13, 41, 46] leverage deep
neural networks based on data-driven approaches which of-
ten extract more robust and discriminative descriptors than
the rule-based ones. Despite the enhanced robustness that
learning-based methods have, they often rely on regular
convolutions to encode images [6, 13, 32, 41, 46], which
ignore the geometric invariance and long-distance aware-
ness critical for robust description under challenging con-
ditions. Subsequently, [26, 28, 45] have partially addressed
geometric invariance by estimating the scale and orienta-
tion of keypoint descriptors to model affine transformations.
ALIKED [47] and ASLFeat [28] advanced this approach by
using deformable convolutions capable of modeling any ge-
ometric transformations. However, these methods are lim-
ited to modeling transformations within local windows; fea-
tures learned with the localized kernels of convolution oper-
ators fall short of learning important visual cues that depend
on long-range relationships (e.g. vanishing lines).

https://xtcpete.github.io/rdd/


In this paper, we focus on feature detection and descrip-
tion in challenging scenarios that haven’t been effectively
addressed in prior works – specifically, extracting reliable
and discriminative keypoints and descriptors across images
with large camera baselines, significant illumination vari-
ations, and scale changes. We therefore propose RDD: a
novel two-branch architecture for keypoint detection and
description that can model both geometric invariance and
global context at the same time. In particular, we design
two dedicated network branches: a fully convolutional ar-
chitecture to perform keypoint detection and a transformer-
based architecture for extracting descriptors: the objectives
of keypoint detection and description have previously been
found not to align perfectly [21]. We observe that the con-
volutional neural network excels in detecting sub-pixel key-
points thanks to its expressiveness, whereas a transformer-
based architecture is particularly suited for learning features
that captures global context and possess geometric invari-
ance through its self-attention mechanism [7, 42]. However,
as self-attention layers attend to all spatial locations in the
image, they significantly increase computational overhead
and may reduce descriptor discriminability. To address this,
we have adopted the deformable attention [48] for keypoint
description, allowing our designed network to selectively
focus on key locations, which greatly reduces time com-
plexity while maintaining the capability to learn geometric
invariance and global context.

The two-branch architecture of RDD allows specialized
architectures to learn keypoint detection and description in-
dependently. Our experiments have found that such design
choice accelerates convergence and leads to better overall
performance, as proven in Sec. 4.4. Overall, RDD is de-
signed to be robust, achieving competitive performance on
challenging imagery and also capable of semi-dense match-
ing Fig. 1. This enhanced capability improves accuracy and
stability in 3D vision applications, such as structure-from-
motion (SfM) [4] and relative camera pose estimation un-
der difficult imaging conditions. Our approach outperforms
current state-of-the-art methods for keypoint detection and
description on standard benchmarks, including MegaDepth-
1500 [8], HPatches [1], and Aachen-Day-Night [38], across
various tasks. However, to the best of our knowledge, no
existing benchmarks accurately capture the aftermentioned
challenging scenarios. To further validate the robustness of
our method and provide a more comprehensive evaluation,
we have collected and derived two additional benchmark
datasets. The main contributions of our work are:

• A novel two branch architecture that utilizes a convolu-
tional neural network for detecting accurate keypoints and
transformer based network to extract robust descriptors
under challenging scenarios, all while maintaining effi-
cient runtime performance.

• An innovative refinement module for semi-dense match-

ing, improving matching accuracy and density.
• Dataset contribution: MegaDepth-View, derived from

MegaDepth [22], specifically focuses on challenging im-
age pairs with large viewpoint and scale variations. Air-
to-Ground dataset provides diverse aerial and ground
cross view imagery for training and evaluation, enhancing
robustness and performance and providing a new evalua-
tion setting.

2. Related Work

2.1. Geometric Invariant Descriptors
In geometric invariance modeling, previous methods have
primarily focused on two key aspects: scale and orientation.
In traditional hand-crafted methods, SIFT [25] estimates a
keypoint’s scale and orientation by analyzing histograms of
image gradients and subsequently extracts and normalizes
image patches around the keypoint to construct scale- and
orientation-invariant descriptors. Similarly, ORB [35] com-
putes orientation based on the keypoint’s center of mass,
followed by rotation of the image patches to ensure orienta-
tion invariance.

Learning-based methods approach geometric invariance
through two primary strategies. The majority of these meth-
ods [6, 8, 13, 32, 33, 41] relies heavily on data augmenta-
tion techniques to achieve scale and orientation invariance.
On the other hand, some learning-based approaches explic-
itly model scale and orientation. For instance, LIFT [45]
mimics SIFT [25] by detecting keypoints, estimating their
orientation, and extracting descriptors with different neu-
ral networks. Other methods, such as AffNet [30] and
LF-Net [31], predict affine transformation parameters and
apply these transformations via Spatial Transformer Net-
works [18] to produce affine-invariant descriptors. These
methods generally assume a predefined geometric transfor-
mation, typically affine transformations. More recent ad-
vancements, such as ASLFeat [28] and ALIKED [47], em-
ploy deformable convolutions to directly extract geometric-
invariant features, offering a more flexible and adaptive ap-
proach to handling geometric variations.

Inspired by the use of deformable convolutions in fea-
ture description, the proposed network RDD employs de-
formable attention to extract geometric invariant features
that are not restricted by local windows.

2.2. Decoupling Keypoint and Descriptor Learning
In traditional handcrafted methods for feature detection and
description, such as SIFT [25] and ORB [35], the de-
tection and description processes are performed indepen-
dently. This decoupled approach was also common in early
learning-based methods [2, 29], where keypoint detection
and description were treated as separate tasks. However,
later works [6, 8, 13, 33] proposed an end-to-end frame-
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Figure 2. An overview of our network architecture. Descriptor Branch FD and Keypoint Branch FK process an input image I ∈ RH×W×3

independently. Descriptor Branch: 4 layers of multiscale feature maps {xl
res}Ll=1 are extracted by passing I through ResNet-50 [15]

Fres. Additional feature map at scale of 1/64 is added by applying a simple CNN on the last feature map and then they are feed to a
transformer encoder Fe with positional embeddings [42]. We up-sample all feature maps output by Fe to size H/k×W/k where k = 4 is
the patch size. Feature maps are then summed together to generate the dense descriptor map D. A classification head Fm is applied to the
descriptor map to estimate a matchability map M . Keypoint Branch: I passes through a lightweight CNN with residual connection [15]
Fcnn to capture multi-scale features {xl

cnn}Ll=1. Features are then up-sampled to size H ×W and concatenated to generate a feature map
of H ×W × 64. A score map S is estimated by a classification head Fs. Final sub-pixel keypoints are detected using DKD [46].

work, jointly optimizing keypoint detection and descrip-
tor extraction. This joint learning approach ensures that
the detected keypoints and their descriptors complement
each other. Despite the advantages, [21] highlighted a
potential drawback of joint training, observing that poorly
learned descriptors could negatively impact keypoint detec-
tion quality. Subsequently, DeDoDe[10] demonstrated that
decoupling keypoint detection and description into two in-
dependent networks can significantly improve performance.
Similarly, XFeat [32] showed that using task-specific net-
works provides a better balance between efficiency and ac-
curacy. Inspired by these recent insights, RDD consists of
two separate branches for independent keypoint detection
and description. We also formulate a training strategy that
optimize the descriptor branch first and then the keypoint
branch. This design enables both sparse and dense match-
ing and ensures optimized performance across various sce-
narios.

2.3. Efficient Attention Mechanisms

The quadratic complexity of multi-head attention [42] leads
to long training schedules and limited spatial resolution for
tractability. For 2D images, LR-Net [16] proposed a local
relation layer, computing attention in a fixed local window.
Linear Transformer [19] proposes to reduce the computa-
tion complexity of vanilla attention to linear complexity by
substituting the exponential kernel with an alternative ker-

nel function. Deformable attention [48] further allows the
attention window to depend on the query features. With
a linear projection predicting a deformable set of displace-
ments from the center and their weight, each pixel in the
feature map may attend to a fixed number of pixels of arbi-
trary distance. Deformable attention [48] is well-suited for
our objectives, enabling efficient learning of global context,
making it a fitting choice for our approach.

3. Methods

Our method extracts descriptors and keypoints separately
using a descriptor branch and a keypoint branch, as shown
in Fig. 2. For an input image I ∈ RH×W×3, the descrip-
tor branch first extracts multi-scale feature maps {xl

res}Ll=1

from I using ResNet-50 [15], denoted as Fres, and then
estimates a descriptor map D ∈ RH/k×W/k through a de-
formable transformer encoder [48], denoted as Fe, where
k = 4 is the patch size. The matchability map M ∈
RH/k×W/k is then estimated from D with a classification
head Fm. The keypoint branch FK estimates a scoremap
S ∈ RH×W by passing image I through a lightweight CNN
with residual connection [15] Fcnn and a classification head
Fs, then sub-pixel keypoints ps = [x, y]T are detected with
differentiable keypoint detection (DKD) [46].

The detected keypoints are used to sample their corre-
sponding descriptors d ∈ R256 from D. In Sec. 3.1, we
provide an overview of DKD [46] and deformable atten-



tion [48]. In Sec. 3.2, we introduce the network architec-
ture. In Sec. 3.3, we discuss how sparse and dense matching
are obtained. Finally, the training details and loss functions
are presented in Sec. 3.4.

3.1. Preliminaries
3.1.1. Differentiable Keypoint Detection
Given the scoremap S, DKD detects sub-pixel keypoint lo-
cations through partially differentiable operations. First, lo-
cal maximum scoremap Snms is obtained by non-maximum
suppression in local N ×N windows. Pixel-level keypoints
pnms = [x′, y′]T are then extracted by applying a thresh-
old to Snms. DKD then selects all scores s(i, j) in the
N × N windows centered on pnms from S and estimates
a sub-pixel-level offset through following steps:

s(i, j) are first normalized with softmax:

s′(i, j) = softmax

(
s(i, j)− smax

tdet

)
, (1)

where tdet is the temperature. Then s′(i, j) represents the
probability of [i, j]T to be a keypoint within the local win-
dow. Thus, the expected position of the keypoint in the local
window can be given by integral regression [14, 40]:

[̂i, ĵ]Tsoft =
∑

0≤i,j<N

s′(i, j)[i, j]T . (2)

The final estimated sub-pixel-level keypoint is

ps = [x, y]T = [x′, y′]T + [̂i, ĵ]Tsoft. (3)

3.1.2. Deformable Attention
Given a feature map x ∈ {xl

res}Ll=1, deformable attention
selects a small set of sample keys pq corresponding to the
query index q and its feature vectors zq . The deformable
attention feature xd is calculated by

xd(zq,pq,x) =

M∑
m=1

WmAmq, (4)

where

Amq =

K∑
k=1

Amqk ·W′
mx(pq +∆pmqk), (5)

m indexes the attention head, k indexes the sampled keys,
and K is the total number of sampled keys. W and W′ are
learnable weights. ∆pmqk and Amqk denote the sampling
offset and attention weight of the k-th sampling point in the
m-th attention head, where the sampling points are inferred
by a linear layer.

Most of recent keypoint detection and description frame-
works [10, 32, 46, 47] benefit from the use of multi-scale
feature maps to capture fine details and broader spatial con-
text. Deformable attention naturally extends to multi-scale
feature maps [48], enabling the network to effectively adapt

to features at different scales. Similar to Eq. (4), multi-scale
deformable attention feature xmsd can be calculated similar
to Eq. (4) and Eq. (7)

xmsd(zq,pq, {xl}Ll=1) =

M∑
m=1

WmA′
mq, (6)

where

A′
mq =

[ L∑
l=1

K∑
k=1

Amlqk ·W′
mxl(fs(p̂q)+∆pmlqk)

]
. (7)

Here, p̂q ∈ [0, 1]2 is the normalized coordinates and
function fs re-scales it to match the scale of input feature
map of the l-th level.

3.2. Network Architecture

Descriptor Branch The descriptor branch FD extracts a
dense feature map D ∈ RH/4×W/4×256 and a matchability
map M , which models that probability of a given feature
vector can be matched.

Using a ResNet-50 [15] as the CNN backbone, Fres ex-
tracts feature maps at 4 scales, each with resolutions of
1/4, 1/8, 1/16, 1/32 of the original image. An additional
feature map at scale of 1/64 is then included by applying a
CNN on the last feature map. These features are position-
ally encoded and fed into Fe with multi-scale deformable
attention [48], enabling the network to dynamically attend
to relevant spatial locations across multiple scales. We use
4 encoder layers each with 8 attention heads and each head
samples 8 points. The entire process of the Descriptor
Branch is illustrated in Fig. 2.

Keypoint Branch The keypoint branch is dedicated
solely to detecting accurate keypoints without being in-
fluenced by descriptor estimation. Fcnn extracts feature
maps at 4 different resolutions, each with a resolution of
1/1, 1/2, 1/8, and 1/32 of the original image and feature
dimension of 32. These features are subsequently upsam-
pled to match the original image resolution and concate-
nated to produce a feature map of size H ×W × 128. Then
Fs is used to estimate the scoremap. DKD [46] is applied
on the scoremap to perform non-maximum suppression and
detect the sub-pixel-accurate keypoints. Fig. 2 depicts the
entire process of the Keypoint Branch.

3.3. Feature Matching

In this section, we describe how sparse matches and dense
matches are obtained for a given image pair I1 and I2.
Our network outputs sparse keypoints p1,2s , descriptor maps
D1,2, and matchability maps M1,2 all in a single forward
pass. We bilinearly upsample D1,2 to match the original
resolution of I1 and I2. Descriptors d1,2 are then sampled
from D1,2 using p1,2s .



Sparse Matching Dual-Softmax operator [34, 41] is used
to establish correspondences between two descriptors d1,2.
The score matrix S between the descriptors is first calcu-
lated by S (i, j) = 1

τ · ⟨ d1, d2⟩, where τ is the temperature.
We can now apply softmax on both dimensions of S to ob-
tain the probability of soft mutual nearest neighbor (MNN)
matching. The matching probability matrix P is obtained
by:

P (i, j) = softmax (S (i, ·))j · softmax (S (·, j))i . (8)

Based on the confidence matrix P , we select matches ms

with confidence higher than a threshold(0.01) to further en-
force the mutual nearest neighbor criteria, which filters pos-
sible outlier matches.

Semi-Dense Matching Recent works [5, 17, 39, 43]
demonstrated the benefits of semi-dense feature matching
by improving coverage and number of inliers. We propose
a novel dense matching module that produces accurate and
geometry consistent dense matches.

Given images I1 and I2, our method can control the
memory and computation usage by only selecting the top-K
coarse keypoints p1,2c according to their matchability score
M1,2. Then we can obtain the coarse matches mc us-
ing equation Eq. (8), similar to how we obtain the sparse
matches ms. These matches are naturally coarse matches
and require refinement for sub-pixel level accuracy as M ’s
resolution is only 1/4 of the original resolution. Unlike ex-
isting methods [5, 39] that crop fine level features around
coarse matches in I1 and I2 and then predict offset in I2,
our work proposes a simple, efficient, and accurate module
for semi-dense feature matching, inspired by [4] that uti-
lizes sparse correspondences in guiding semi-dense feature
matching.

Differing from [4], which iteratively reassigns the coarse
matches of detector-free methods, we adopt a similar idea
to refine coarse matches to fine matches. With ms obtained
from sparse matching, we use the eight-point method to es-
timate a fundamental matrix F that relates corresponding
points between I1 and I2. We keep p1c unchanged and re-
fine p2c by solving offsets (∆x,∆y) that satisfy the epipolar
constraint defined by F . First, we convert p1c to homoge-
neous coordinates p1h. Then, epipolar lines L in I2 for p1h is
computed by

L = F · p1h, (9)

where each line is represented by coefficients a, b and c.
Offsets (∆x,∆y) are then calculated for each point in p2c
by solving the linear equation

a · (x+∆x) + b · (y +∆y) + c = 0 (10)

to enforce the epipolar constraint. Then we can get offsets

∆x =
b(bx− ay)− ac

a2 + b2 + ϵ
−x, ∆y =

a(ay − bx)− bc

a2 + b2 + ϵ
−y,

(11)

where (x, y) are the pixel coordinates of p2c . We finally filter
out points with offsets that are larger than the patch size
(4) because they are moved outside the matched patch and
likely outliers. We then obtain refined dense matches mc

by (x + ∆x, y + ∆y). In Sec. 4.4, we show that without
this refinement module, the performance of dense matching
degrades significantly.

3.4. Implementation Details
We train RDD with pseudo ground truth correspondences
from the MegaDepth dataset [22] and our Air-to-Ground
dataset. We collect data from Internet drone videos and
ground images of different famous landmarks, more details
can be found in the supplementary. Following [37, 39], we
use poses and depths to establish pixel correspondences.
For every given image pair (I1, I2) with N matching pix-
els, mgt ∈ RN×4 is defined such that the first two columns
are the pixel coordinates of points in I1 and the last two
columns are those in I2 obtained through a warping func-
tion fwarp. We train the descriptor branch and the keypoint
branch separately.

Training Descriptor Branch To supervise the local fea-
ture descriptors, we apply focal loss [23] to focus on chal-
lenging examples and reduce the influence of easily classi-
fied matches. Given descriptor maps D1 and D2, we sam-
ple descriptor sets d1gt and d2gt based on the ground truth
matchability mgt/k, where k is the patch size. The i-th
rows, d1gt(i) and d2gt(i), represent descriptors correspond-
ing to the same points in the images I1 and I2, respectively.
Using these descriptors, we compute a probability matrix
P as described in Eq. (8). Our supervision targets positive
correspondences only, represented by the diagonal elements
P(i,i) of P . By enforcing P(i,i) to be close to 1, we calculate
the focal loss Lfocal as follows:

Lfocal = −α · (1− P(i,i))
γ · log(P(i,i)), (12)

where α = 0.25 and γ = 2.
To supervise the matchability map, we apply a modified

focal loss that incorporates binary cross-entropy (BCE) on
the matchability map M1,2. The ground truth matchability
map M1,2

gt is generated using mgt/k. We first compute the
binary cross-entropy loss LBCE as

LBCE = − (Mgt · log(M) + (1−Mgt) · log(1−M)) , (13)

and then replace P(i,i) in Eq. (12) with λ = e−LBCE , re-
sulting in the matchability loss Lmatchability:

Lmatchability = −α · (1− λ)γ · LBCE . (14)

The final loss for the descriptor branch is defined as
LD = Lfocal + Lmatchability. We train the descriptor
branch on the mixture of MegaDepth dataset [22] and col-
lected Air-to-Ground dataset, with images resized to 800.
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The training uses a batch size of 32 image pairs and the
AdamW optimizer [27]. We use a base learning rate of
1 · 10−4 with a step learning rate scheduler that updates
the learning rate every 2000 steps after 20000 steps with
γ = 0.5. The descriptor branch converges after 1 day of
training on 8 NVIDIA H100 GPU.

Training Keypoint Branch We freeze the weights of de-
scriptor branch once it converges and only supervise the
keypoint branch to detect accurate and repeatable keypoints.
We apply reprojection loss Lreprojection, reliability loss
Lreliability similar to [8, 28, 46] and dispersity peaky loss
Lpeaky [46] to train repeatable and reliable keypoints.

Given detected keypoint p1s from I1 and p2s from I2. We
obtain the warped keypoints p1→2

s using fwarp and we find
their closest keypoints from p2s with distance less than 5 pix-
els as matched keypoints. Then, dist1→2 is the reprojection
distance between the matched p1s and p2s. We define the re-
projection loss in a symmetric way:

Lreprojection =
1

2
(dist1→2 + dist2→1), (15)

For keypoint p1s and its warped keypoint p1→2
s with scores

s1 and s1→2, and the probability map P as described
in Sec. 3.3, the reliability map is defined as

R = exp

(
P − 1

trel

)
, (16)

where trel is the temperature parameter. Considering all
valid p1s and warped points p1→2

s , we sample the reliability

r1 from R. The reliability loss for p1s is then defined as

L1
reliability =

1

N1

∑
p1
s,p

1→2
s

s1 · s1→2∑
p1
s,p

1→2
s

s1 · s1→2
(1−r1). (17)

Similarly, the total reliability loss is defined symmetrically
as

Lreliability =
1

2

(
L1

reliability + L2
reliability

)
. (18)

Eq. (15) optimizes the scores of keypoints in local win-
dow through the soft term [̂i, ĵ]Tsoft of Eq. (3), which might
affect the first term [x′, y′]Tnms of the equation. In order to
align their optimization direction, we define the dispersity
peak loss similiar to [46] as

Lpeaky =
1

N2

∑
0≤i,j<N

d(i, j)s′(i, j), (19)

where

d(i, j) =
{
||[i, j]− [̂i, ĵ]soft||p | 0 ≤ i, j < N

}
, (20)

N is the window size and s′(i, j) are softmax scores defined
in Eq. (1).

The overall loss for the keypoint branch is defined as
LK = Lreprojection + Lreliability + Lpeaky . We use the
DKD [46] with a window size of N = 5 to detect the
top 500 keypoints, and we randomly sample 500 keypoints
from non-salient positions. We train the keypoint branch
similarly to the descriptor branch, the keypoint branch con-
verges after 4 hours of training on an NVIDIA H100 GPU.



Table 1. SotA comparison on the MegaDepth [22]. Results are
measured in AUC (higher is better). Top 4,096 features used to all
sparse matching methods. Best in bold, second best underlined.

Method
MegaDepth-1500 MegaDepth-View

AUC AUC
@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

Dense
DKM [9] CVPR’23 60.4 74.9 85.1 67.4 80.0 88.2
RoMa [12] CVPR’24 62.6 76.7 86.3 69.9 81.8 89.4

Semi-Dense
LoFTR [39] CVPR’21 52.8 69.2 81.2 50.6 65.8 77.9
ASpanFormer [5] ECCV’22 55.3 71.5 83.1 61.3 75.2 84.6
ELoFTR [44] CVPR’24 56.4 72.2 83.5 60.2 74.8 84.7
XFeat* [32] CVPR’24 38.6 56.1 70.5 23.9 37.7 51.8
RDD* 51.3 67.1 79.3 41.5 55.7 66.7

Sparse with Learned Matcher
SP [6]+SG [37] CVPR’19 49.7 67.1 80.6 51.5 65.5 76.9
SP [6]+LG [24] ICCV’23 49.9 67.0 80.1 52.4 67.3 78.5
Dedode-V2-G [10, 11]+LG [24] ICCV’23 44.1 62.1 76.5 41.9 57.1 70.0
RDD+LG [24] ICCV’23 52.3 68.9 81.8 54.2 69.3 80.3

Sparse with MNN
SuperPoint [6] CVPRW’18 24.1 40.0 54.7 7.50 13.3 21.1
DISK [41] NeurIps’20 38.5 53.7 66.6 30.4 41.9 51.6
ALIKED [47] TIM’23 41.8 56.8 69.6 30.0 41.8 53.2
XFeat [32] CVPR’24 24.0 40.1 55.8 8.82 16.5 26.8
DeDoDe-V2-G [10, 11] CVPRW’24, 3DV’24 47.2 63.9 77.5 33.1 47.6 60.2
RDD 48.2 65.2 78.3 38.3 53.1 65.6

4. Experiments
In this section, we demonstrate the performance of our
method in Relative Pose Estimation on public bench-
mark datasets MegaDepth [22] and collected Air-to-Ground
dataset, and in Visual Localization using Aachen Day-Night
dataset [38]. All experiments are conducted on an NVIDIA
H100 GPU.

4.1. Relative Pose Estimation
Dataset Following [8, 10, 32], we use the standard
MegaDepth-1500 benchmark from D2-Net [8] for outdoor
pose estimation and adopt the same test split. To further
validate the performance of RDD in challenging scenar-
ios, we construct two benchmark datasets. MegaDepth-
View is derived from MegaDepth [22] test scenes, focus-
ing on pairs with large viewpoint and scale changes; ad-
ditionally, we sampled 1500 pairs from our collected Air-
to-Ground dataset. This benchmark is designed to validate
feature matching performance for large-baseline outdoor
cross-view images, which is naturally challenging because
of geometric distortion and significant viewpoint changes.

Metrics and Comparing Methods We report the AUC of
recovered pose under threshold of (5◦, 10◦ ,and 20◦). We
use RANSAC to estimate the essential matrix. We com-
pared RDD against the state-of-the-art detector/descriptor
methods [6, 10, 13, 32, 41, 46, 47] and learned match-
ing methods [5, 9, 12, 24, 37, 39, 44] on MegaDepth [22]
dataset. For Air-to-Ground dataset, RDD is compared
against detector/descriptor methods. More results on Air-
to-Ground data can be found in the supplementary. For all
sparse methods, we use resolution whose larger dimension

Table 2. SotA comparison on proposed Air-to-Ground bench-
mark. Keypoints and descriptors are matched using dual-softmax
MNN. Measured in AUC (higher is better). Best in bold, second
best underlined.

Method @5◦ @10◦ @20◦

SuperPoint [6] CVPRW’18 1.89 3.56 6.81
DISK [41] NeurIps’20 19.2 27.1 34.6
ALIKED [47] TIM’23 12.0 17.8 25.8
XFeat [32] CVPR’24 6.12 11.4 17.5
DeDoDe-V2-G [10, 11] CVPRW’24,3DV’24 31.5 45.3 58.3
RDD 41.4 56.0 67.8

Table 3. Homography estimation on HPatches. All methods
perform well for illumination sequences. RDD provides high qual-
ity homography estimation especially when there are significant
viewpoint changes. Best in bold, second best underlined.

Method
Illumination Viewpoint

MHA MHA
@3px @5px @10px @3px @5px @10px

SuperPoint [6] CVPRW’18 93.0 98.0 99.9 70.0 82.0 87.0
DISK [41] NeurIps’20 96.0 98.0 98.0 72.0 81.0 84.0
ALIKED [47] TIM’23 97.0 99.0 99.0 78.0 85.0 88.0
DeDoDe-G [10] 3DV’24 96.0 99.0 99.9 68.0 77.0 80.0
XFeat [32] CVPR’24 90.0 96.0 98.0 55.0 72.0 80.0
RDD 93.0 99.0 99.9 76.0 86.0 90.0

is set to 1,600 pixels and use top 4,096 features, while all
other learned matching methods follow experiment settings
mentioned in their paper.

Results The results are presented in Tab. 1 and Tab. 2,
and visually in Fig. 3. RDD demonstrates superior per-
formance in the sparse matching setting compared to the
state-of-the-art method DeDoDe-V2-G [10, 11], especially
in more challenging scenarios. RDD with learned matcher
LightGlue [24] also outperforms previous methods.

The results on MegaDepth-View and Air-to-Ground
prove the effectiveness of our method under challeng-
ing scenarios with significant improvements over previ-
ous methods. RDD outperforms all previous feature de-
tector/descriptor methods under large viewpoints and scale
changes.

4.2. Homography Estimation
Datasets We evaluate the quality of correspondences es-
timated by RDD on HPatches dataset [1] for Homography
Estimation. HPatches contains 52 sequences under signif-
icant illumination changes and 56 sequences that exhibit
large variation in viewpoints. We use RANSAC to robustly
estimate the homography given the estimated correspon-
dences. All images are resized such that their shorter size is
equal to 480 pixels.

Metrics and Comparing Methods We follow [32, 46]
to estimate the mean homogeneity accuracy (MHA) with
a predefined threshold of {3, 5, 7} pixels. Accuracy is



computed using the average corner error in pixels by warp-
ing reference image corners onto target images using both
ground truth and estimated homographies.

Results on HPatches In Table 3, RDD shows a similar
performance in illumination sequences compared to pre-
vious accurate keypoint detectors and descriptors, while
outperforming most of the other methods on viewpoint
changes, reinforcing the robustness of our proposed method
in handling challenging cases such as large baseline pairs.

4.3. Visual Localization
Dataset We further validate the performance of RDD on
the task of visual localization, which estimates the poses
of a given query image with respect to the correspond-
ing 3D scene reconstruction. We evaluate RDD on the
Aachen Day-Night dataset [38]. It focuses on localiz-
ing high-quality night-time images against a day-time 3D
model. There are 14,607 images with changing conditions
of weather, season, viewpoints, and day-night cycles.

Table 4. Visual Localization on Aachen day-night. RDD out-
performs previous state-of-the-art methods with MNN matching
for more challenging night setting. Best in bold, second best un-
derlined.

Methods
Day Night

(0.25m,2°) / (0.5m,5°) / (1.0m,10°)

SuperPoint [6] CVPRW’18 87.4 / 93.2 / 97.0 77.6 / 85.7 / 95.9
DISK [41] NeurIps’20 86.9 / 95.1 / 97.8 83.7 / 89.8 / 99.0
ALIKE [46] TM’22 85.7 / 92.4 / 96.7 81.6 / 88.8 / 99.0
ALIKED [47] TIM’23 86.5 / 93.4 / 96.8 85.7 / 91.8 / 96.9
XFeat [32] CVPR’24 84.7 / 91.5 / 96.5 77.6 / 89.8 / 98.0
RDD 87.0 / 94.2 / 97.8 86.7 / 92.9 / 99.0

Table 5. Ablation study on MegaDepth. We ablate the design
choices for architecture and training strategies for relative pose
estimation on MegaDepth.

Variant AUC@5◦

RDD RDD*

Full 48.2 51.3
Larger patch size s = 8 44.6 49.4
Less sample points Npq

= 4 46.5 49.9
No keypoint branch 44.1 -
Joint training of two branches 42.8 46.9
No match refinement - 41.3
Without Air-to-Ground Data 47.4 50.4

Metrics and Comparing Methods Following [32],
HLoc [36] is used to evaluate all approaches [6, 32, 37, 41,
46, 47]. We resize the images such that their longer side is
equal to 1,024 pixels and sample the top 4,096 keypoints for
all approaches. We use the evaluation tool provide by [38]
to calculate the metrics, the AUC of estimated camera poses
under threshold of {0.25m, 0.5m, 5m} for translation errors
and {2◦, 5◦, 10◦} for rotation errors respectively.

Results Tab. 4 presents the results on visual localization.
RDD outperforms all approaches in the challenging night
setting. These results further validate the effectiveness of
RDD .

4.4. Ablation
To better understand RDD, we evaluate 5 variants of RDD,
with the results shown in Tab. 5: 1) Increasing the patch
size of the transformer encoder results in a significant drop
in accuracy. 2) Reducing the number of sampled points per
query in deformable attention degrades pose estimation ac-
curacy. 3) Removing the keypoint branch and using up-
sampled matchibility map as keypoint score map with NMS
negatively affect the performance. 4) Joint training of the
descriptor and keypoint branches leads to a significant drop
in performance, as the weights of both branches are up-
dated when only one task fails, making it even harder for
the descriptor branch to converge. 5) Simply concatenating
the semi-dense matches from matchability results in worse
performance. 6) Training without Air-to-Ground dataset
slightly damages the performance.

5. Limitations and Conclusion
We present RDD, a robust feature detection and descrip-
tion framework based on deformable transformer, excelling
in sparse image matching and demonstrating strong re-
silience to geometric transformations and varying condi-
tions. By leveraging deformable attention, RDD efficiently
extracts geometric-invariant features, enhancing accuracy
and adaptability compared to traditional methods. RDD
lacks explicit data augmentation during training and de-
pends on confident priors from sparse correspondences
which might lead to the failure of semi-dense matching.
Training with data augmentation and improving the refine-
ment module with visual features might boost the perfor-
mance. RDD marks a significant advancement in keypoint
detection and description, paving the way for impactful ap-
plications in challenging 3D vision tasks like cross-view
scene modeling and visual localization.
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